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Multi-Task Multiple Kernel Relationship Learning

Keerthiram Murugesan∗ Jaime Carbonell∗

Abstract

This paper presents a novel multitask multiple kernel learn-

ing framework that efficiently learns the kernel weights lever-

aging the relationship across multiple tasks. The idea is to

automatically infer this task relationship in the RKHS space

corresponding to the given base kernels. The problem is

formulated as a regularization-based approach called Multi-

Task Multiple Kernel Relationship Learning (MK-MTRL),

which models the task relationship matrix from the weights

learned from latent feature spaces of task-specific base ker-

nels. Unlike in previous work, the proposed formulation al-

lows one to incorporate prior knowledge for simultaneously

learning several related task. We propose an alternating

minimization algorithm to learn the model parameters, ker-

nel weights and task relationship matrix. In order to tackle

large-scale problems, we further propose a two-stage MK-

MTRL online learning algorithm and show that it signif-

icantly reduces the computational time, and also achieves

performance comparable to that of the joint learning frame-

work. Experimental results on benchmark datasets show

that the proposed formulations outperform several state-of-

the-art multitask learning methods.

1 Introduction

There have been two main lines of work in multi-task
learning: First, learn a shared feature representation
across all the tasks, leveraging low-dimensional sub-
spaces in the feature space [1, 9, 17, 23]. Second, learn
the relationship between the tasks to improve the per-
formance of the related tasks [19, 26, 28, 29]. Pairwise
task relationships provide very useful information for
characterizing and transferring information to similar
tasks.

Despite the expressive power of these two different
research directions, the learning space is restricted to a
single kernel (per task), chosen by the user, that cor-
responds to a RKHS space. Multiple Kernel Learning
(MKL), on the other hand, allows the user to specify a
family of base kernels related to an application, and to
use the training data to automatically learn the opti-
mal combination of these kernels. We learn the weights
of the base kernels along with the model parameters in
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a single joint optimization problem. There is a large
body of work in the recent years addressing several as-
pects of this problem, such as efficient learning of the
kernel weights, fast optimization and providing better
theoretical guarantees [2, 4, 11, 12, 15, 18, 22].

Recent work in multiple kernel learning in a mul-
titask framework focuses on sharing common represen-
tations and assumes that the tasks are all related [10].
The motivation for this approach stems from multitask
feature learning that learns joint feature representation
shared across multiple tasks [1, 23]. Unfortunately, the
assumption that all the tasks are related and share
a common feature representation is too restrictive for
many real-world applications. Similarly, based on pre-
vious work [29], one can extend the traditional mul-
titask relationship learning MTRL with multiple task-
specific base kernels. There are two main problems with
such naive approach: First, the unknown variables (task
model parameters, kernel weights and task relationship
matrix) are intertwined in the optimization problem,
and thus making it difficult to learn for large-scale ap-
plications. Furthermore, the task relationship matrix is
learned in the original feature space rather than in the
kernel spaces. We show in this paper, that learning the
relationship between the kernel spaces empirically per-
forms better than relations among the original feature
spaces.

There have been a few attempts to imposing higher-
order relationship between kernel spaces using kernel
weights. Kloft et al. [12] propose a non-isotropic norm

such as

√

β⊤Σ−1β on kernels weights β to induce the
relationship between the base kernels in Reproducing
Kernel Hilbert Spaces. For example, in neuroimaging,
a set of base kernels are derived from several medical
imaging modalities such as MRI, PET etc., or image
processing methods such as morphometric or anatom-
ical modeling, etc. Since some of the kernel functions
share similar parameters such as patient information,
disease progression stage, etc., we can expect that these
base kernels are correlated based on how they were con-
structed. Such information can be obtained from med-
ical domain experts as a part of the disease prognosis
which then can be used as a prior knowledge Σ. Pre-
vious work either assumes Σ as a diagonal matrix or
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requires prior knowledge from the experts on the in-
teraction of kernels [8, 12]. Unfortunately, such prior
knowledge is not easily available in many applications
either because it is time-consuming or it is expensive to
elicit. [13]. In such applications, we want to induce this
relationship matrix from the data along with the kernel
weights and model parameters.

This paper addresses these problems with a novel
regularization-based approach for multitask multiple
kernel learning framework, calledmultitask multiple ker-

nel relationship learning (MK-MTRL), which models
the task relationship matrix from the weights learned
from the latent feature spaces of task-specific base ker-
nels. The idea is to automatically infer task relation-
ships in (RKHS ) spaces from their base kernels. We
first propose an alternating minimization algorithm to
learn the model parameters, kernel weights and task re-
lationship matrix. The method uses a wrapper approach
which efficiently uses any off-the-shelf SVM solver (or
any kernel machine) to learn the task model parame-
ters. However, like previous work, the proposed itera-
tive algorithm suffers from scalability challenges. The
run-time complexity of the algorithm increases with the
number of tasks and the number of base kernels per
task, as it needs these base kernels in memory to learn
the kernel weights and the task relationship matrix.

For large-scale applications such as object detec-
tion, we introduce a novel two-stage online learning al-
gorithm based on recent work [14] that learns the kernel
weights independently from the model parameters. The
first stage learns a good combination of base kernels in
an online setting and the second stage uses the learned
weights to estimate a linear combination of the base ker-
nels, which can be readily used with a standard kernel
method such as SVM or kernel ridge regression [5, 6].
We provide strong empirical evidence that learning the
task relationship matrix in the RKHS space is bene-
ficial for many applications such as stock market pre-
diction, visual object categorization, etc. On all these
applications, our proposed approach outperforms sev-
eral state-of-the-art multitask learning baselines. It is
worth noting that the proposed multitask multiple ker-
nel relationship learning can be readily applied for het-
erogeneous and multi-view data with no modification to
the proposed framework [7, 27].

The rest of the paper is organized as follows: we
provide a brief overview of multitask multiple kernel
learning in the next section. In section 3, we discuss
the proposed model MK-MTRL, followed by our two-
stage online learning approach in section 4. We then
show comprehensive evaluations of the proposed model
against the six baselines on several benchmark datasets
in section 6.

2 Preliminaries

Before introducing our approach, we briefly review the
multitask multiple kernel learning framework in this
section. Suppose there are T learning tasks available
with the training set D = {(xti,yti), i = 1 . . .Nt, t =
1 . . . T } , where xti is the ith samples from the task
t and it’s corresponding output yti. Let {Ktk}

1≤k≤K

be a set of task-specific base kernels, induced by the
kernel mapping function φk(·) on tth task data. The
objective of multitask multiple kernel learning problem
is to learn a good linear combination of the task-specific
base kernels

∑

k βtkKtk, βtk ≥ 0 using the relationship
between the tasks.

In addition to the non-negative constraints on βtk,
we need to impose an additional constraint or penalty to
ensure that the units in which the margins are measured
are meaningful (assuming that the base kernels are
properly normalized). Recent work in MKL employs
‖β‖22 to constrain the kernel weights. A direct extension
of ℓ2 regularized MKL to multi-task framework is given
as follows 1:

(2.1)

min
B≥0

min
W,c,ξ

T
∑

t=1

(

1

2

K
∑

k=1

‖wtk‖
2
Hk

βtk

+ C

Nt
∑

i=1

ξti +
µ

2
‖βt‖

2
2

)

s.t., yti(

K
∑

k=1

w⊤
tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

where Hk is the reproducing kernel Hilbert space asso-
ciated with the kth kernel function and ‖ · ‖2Hk

is the
squared RKHS norm.

Similarly, we can use a general ℓp norm constraint
with p > 1 on the kernel weights (‖β‖2p). This can be
thought of as a simple extension of ℓp-MKL to multi-
task setting [11]. Without any additional structural
constraints on βtk, the kernel weights are learned inde-
pendently for each task and thus does not efficiently use
the relationship between the tasks. Hence, we call the
model in equation (2.1) as Independent Multiple Kernel
Learning (IMKL).

Jawanpuria and Nath [10] proposedMulti-task Mul-
tiple Kernel Feature Learning (MK-MTFL), that em-
ploys mixed (ℓ1, ℓp), p ≥ 2 norm regularizer over the
RKHS norm of the feature loadings corresponding to
the tasks and the base kernels. The mixed norm reg-
ularization promotes a shared feature representations
to combine the given set of task-specific base kernels.

1For clarity, we use binary classification tasks to explain the

preliminaries and the proposed approach. They can be easily

applied to multiclass tasks and also to regression tasks via kernel

ridge regression.



The ℓp-norm regularizer learns the unequal weighting
across the tasks, where as, ℓ1-norm regularizer over the
ℓp-norm leads to learning the shared kernel among the
tasks.

The objective function for MK-MTFL is given as
follows:

(2.2)

min
W,c,ξ

(

1

2

K
∑

k=1

(

T
∑

t=1

‖wtk‖
p
2

)
1

p

)2

+ C

T
∑

t=1

Nt
∑

i=1

ξti

s.t., yti(

K
∑

k=1

w⊤
tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

Note that the above objective function employs an ℓ1-
norm across the base kernels and ℓp norm across tasks.
The above optimization problem can be equivalently
written in the dual space as follows:

(2.3)
min
γ∈∆K

max
λj∈∆T,p̃

max
0≤α≤C

g(λ, α, γ)

s.t., α⊤
t yt = 0,

where,

g(λ, α, γ) =

T
∑

t=1

{

1⊤αt −
1

2
α⊤
t Yt

[

K
∑

k=1

γkKtk

λtk

]

Ytαt

}

Here αt is a vector of Langragian multipliers for the
tth task, and corresponds to Nt constraints on the task
data. Y t is a diagonal matrix with entries as yt and
Ktk is the gram matrix of the tth task data w.r.t the kth

kernel function. More specifically, γ selects the base
kernels that are important for all the tasks, where as
λ selects the base kernels that are specific to individual
tasks. With this representation, MK-MTFL can be seen
as a multiple kernel generalization to the multi-level
multi-task learning proposed by Lozano and Swirszcz
(2012) [23].

3 Multi-task Multiple Kernel Relationship
Learning (MK-MTRL)

This section presents the details of the proposed model
MK-MTRL. Since multitask learning seeks to improve
performance of each task with the help of other related
tasks, it is desirable in multiple kernel learning for the
multitask framework to have a structural constraints
on the task kernel weights βtk to promote sharing of
information from other related tasks. Note that the
proposed approach is significantly different from the
traditional MTRL, as explained in the introduction.

When prior knowledge on task relationship is avail-
able, the multiple kernel multitask learning model
should incorporate this information for simultaneously
learning several related tasks. Neither the IMKL or

MK-MTFL consider the pairwise task relationship such
as positive task correlation, negative task correlation,
and task independence when learning the kernel weights
for combining the base kernels. Based on the assump-
tion that similar tasks are likely to give similar impor-
tance to their base kernels (and thereby, their respective
RKHS spaces), we consider a regularization on the task
kernel weights tr(BΩ−1B⊤), where, for notational con-
venience, we write B = {β1,β2, . . . ,βT }. Mathemat-
ically, the proposed MK-MTRL formulation is written
as follows:

(3.4)

min
Ω,B≥0

min
W,c,ξ

T
∑

t=1

(

1

2

K
∑

k=1

‖wtk‖
2
Hk

βtk

+ C

Nt
∑

i=1

ξti

)

+
µ

2
tr(BΩ−1B⊤)

s.t., yti(

K
∑

k=1

w⊤
tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

Ω � 0,

tr(Ω) ≤ 1

The key difference from the IMKL model is that the
standard (squared) ℓp norm on βt is replaced with a
more meaningful structural penalty that incorporates
the task relationship. Unlike in MK-MTFL, the shared
information among the task is separate from the core
problem (T SVMs). Here, Ω encodes the task relation-
ship such that similar tasks are forced to have similar
kernel weights. It is easy to see that when Ω = IT×T ,
the above problem reduces to equation (2.1).

3.1 MK-MTRL in Dual Space In this section,
we consider the proposed approach in the dual space.
By writing the above objective function in Lagrangian
form and introducing Lagrangian multiplier αtk for
the constraints, we can write the corresponding dual
objective function as:

(3.5)

min
Ω,B≥0

max
0≤α≤C

h(α,B) +
µ

2
tr(BΩ−1B⊤)

s.t., α⊤
t yt = 0,

Ω � 0,

tr(Ω) ≤ 1

where,

h(α,B) =

T
∑

t=1

{

1⊤αt −
1

2
α⊤
t Yt

(

K
∑

k=1

βtkKtk

)

Ytαt

}

The above objective function is a bi-convex optimization
problem. Note that we can further reduce the problem
by eliminating αtk, then the dual problem becomes:



(3.6)

min
Ω

max
0≤α≤C

T
∑

t=1

{

1⊤αt −
1

2
‖G‖Ω

}

s.t., α⊤
t yt = 0,

Ω � 0,

tr(Ω) ≤ 1

where Gtk = βtkα
⊤
t YtKtkYtαt which corresponds to

‖wtk‖
2

2

βtk
in the primal space and we write ‖G‖Ω =

√

tr(GΩG⊤). We will use this representation for de-
riving closed-form solution for the task kernel weights
B

3.2 Optimization We use an alternating minimiza-
tion procedure for learning the kernel weights and the
model parameters iteratively. We implement a two-layer
wrapper approach commonly used in these MKL solvers
for our problem. The wrapper methods alternate be-
tween minimizing the primal problem (3.4) w.r.t βt via
a simple analytical update step and minimizing all other
variables in terms of the dual variables αt from equation
(3.5).

When {B,Ω} are fixed, MK-MTRL equation (3.5)
reduces to T independent sub-problems. One can use
any conventional SVM solver (or any kernel method) to
optimize for αt independently. We focus on optimizing
the kernel coefficients B and Ω next.

Optimizing w.r.t B when {α,Ω} are fixed Given
{α,Ω}, we find B by setting the gradient of equation
(3.4) w.r.t B to zero and we get:

(3.7) B =
1

µ
(W ◦B−2)Ω

where B−2 = {β−2
kt , 1 ≤ k ≤ K, 1 ≤ t ≤ T },

Wtk = ‖wtk‖
2
Hk

and A ◦B is an element-wise product
operation.

By incorporating the last term in equation (3.4)
into the constraint set, we can eliminate the regular-
ization parameter µ to obtain an analytical solution
for B. Because Ω � 0 and B ≥ 0, the constraint
tr(BΩ−1B⊤) ≤ 1 must be active at optimality. We
can now use the above equation to solve for µ.

(3.8) B =
(W ◦B−2)Ω

√

tr((W ◦B−2)Ω(W ◦B−2)⊤)

Since the task relationship matrix is independent of
the number of base kernels K, one may use the above
closed-form solution when the number of tasks is small.

For some applications, it may be desirable to employ an
iterative approach such as first-order method (FISTA)
or second-order method (Newton’s). The parameter µ

can be easily learned by cross-validation.

Optimizing w.r.t Ω when {α,B} are fixed In the
final step of the optimization, we fix α and B and solve
the problem w.r.t Ω. By taking the partial derivative
of the objective function with respect to Ω and setting
it zero, we get an analytical solution for Ω [29]:

(3.9) Ω =
(B⊤B)

1

2

tr((B⊤B)
1

2 )

Substituting the above solution in equation 3.4, we can
see that the the objective function of MK-MTRL is
related to the trace norm regularization. Instead of
ℓp norm regularization (as in Lp-MKL) or mixed-norm
regularization (as inMK-MTFL), our model seeks a low-
rank B, using ‖B‖∗, such that similar base kernels are
selected among the similar tasks.

4 Two-Stage Multi-task Multiple Kernel
Relationship Learning

The proposed optimization procedure in the previous
section involves T independent SVM (or kernel ridge

regression) calls, followed by two closed-form expres-
sions for jointly learning the kernel weights B, task re-
lationship matrix Σ and the task parameters α. Even
though this approach is simple and easy to implement,
it requires the precomputed kernel matrices to be loaded
into memory for learning the kernel weights. This could
add a serious computational burden especially when the
number of tasks T is large [25].

In this section, we consider an alternative approach
to address this problem inspired by [5, 6]. It follows a
two-stage approach: first, we independently learn the
weights of the given task-specific base kernels using the
training data and then, we use the weighted sum of
these base kernels in a standard kernel machines such
as SVM or kernel ridge regression to obtain a classi-
fier. This approach significantly reduces the amount of
computational overhead involved in the traditional mul-
tiple kernel learning algorithms that estimate the kernel
weights and the classifier by solving a joint optimization
problem.

We propose an efficient binary classification frame-
work for learning the weights of these task-specific base
kernels, based on target alignment [6]. The proposed
framework formulates the kernel learning problem as
a linear classification in the kernel space (so called
K-classifier). In this space, any task classifier with
weight parameters directly corresponds to the task ker-
nel weights.



Algorithm 1: Wrapper method for Multi-task
Multiple Kernel Relationship Learning (MK-

MTRL)

Input : Base kernels {Ktk}
1≤k≤K
1≤t≤T ,

labels {yt)}
T
t=1,

regularization parameter µ > 0
Output: α,B,Ω

1 Initialize Ω = 1
T
IT×T ;

2 repeat
3 repeat

4 Set Kt ←
∑K

k=1 βtkKtk, ∀t ∈ [T ];
5 Solve for αt, t ∈ [T ]

(4.10)

max
0≤αt≤C,α⊤

t yt=0

{

1⊤αt−
1

2
α⊤
t YtKtYtαt

}

(SVM )

6 Solve for B = {β1,β2, . . . ,βT },
(4.11)

min
B≥0

1

2

T
∑

t=1

K
∑

k=1

‖wtk‖
2
Hk

βtk

+
µ

2
tr(BΩ−1B⊤)

where ‖wtk‖
2
Hk

= β2
tkα

⊤
t YtKtkYtαt

7 until converges ;
8 Solve for Ω,

(4.12) min
Ω�0,tr(Ω)≤1

tr(Ω−1(B⊤B))

9 until converges ;

For a given set of T ∗K base kernels {Ktk}
1≤k≤K
1≤t≤T (K

base kernels per task), we define a binary classification
framework over a new instance space (so called K-space)
defined as follows:
(4.16)
zt,ii′ = {K1(xti,xti′),K2(xti,xti′ ), . . . ,KK(xti,xti′ )}

lt,ii′ = 2.1{yti = yti′} − 1

Any hypothesis ht : R
K → R for a task t induces a

similarity function K̃ht
(xti,xti′) between instances xti

and xti′ in the original space:

K̃ht
(xti,xti′) = ht(zt,ii′ )

= ht(K1(xti,xti′), . . . ,KK(xti,xti′))

Suppose we consider a linear function for our task
hypothesis ht(zt,ii′) = βt.zt,ii′ with the non-negative
constraints βt ≥ 0, then the resulting induced kernel
K̃ht

is also positive semi-definite. The key idea behind
this two-stage approach is that if a K-classifiers ht is a
good classifier in the K-space, then the induced kernel
K̃ht

(xti,xti′ ) will likely be positive when xti and xti′

Algorithm 2: Two-stage, online learning of
(MK-MTRL)

Input : Base kernels {Ktk}
1≤k≤K
1≤t≤T ,

labels {yt)}
T
t=1,

regularization parameter µ > 0,
Number of rounds R

Output: α,B,Ω

1 Initialize β
(1)
t = 0,Ω = 1

T
IT×T ;

2 for r = 1 . . . R do
3 Construct (zt,ii′ , lt,ii′) using K for any two

examples (xti, yti) and (xti′ , yti′) and for
any task t, where

(4.13)

zt,ii′ = {K1(xti,xti′ ),K2(xti,xti′),

. . . ,KK(xti,xti′ )}

lt,ii′ = 2.1{yti = yti′} − 1

4 Predict l̂t,ii′ = β
(r)⊤
t zt,ii′

5 if (lt,ii′ 6= l̂t,ii′) then
6 for t′ = 1 . . . T do

7 β
(r+1)
t′ = β

(r)
t′ + 1

µ
lt,ii′Ωt,t′zt,ii′

8 end
9 Solve for Ω,

(4.14) min
Ω�0,tr(Ω)≤1

tr(Ω−1(B⊤B))

10 end

11 end

12 Set Kt ←
∑K

k=1 β
(R)
tk Ktk, ∀t ∈ [T ];

13 Solve for αt, t ∈ [T ]
(4.15)

max
0≤αt≤C,α⊤

t yt=0

{

1⊤αt−
1

2
α⊤
t YtKtYtαt

}

(SVM )

belong to the same class and negative otherwise. Thus
the problem of learning a good combination of base
kernels can be framed as a problem of learning a good
K-classifier.

With this framework, the optimization problem for
learning βt for each task t can be formulated as follows:
(4.17)

min
B≥0

T
∑

t=1

ℓ(lt,ii′ , 〈βt, zt,ii′〉) +
µ

2
R(B)

ℓ(lt,ii′ , 〈βt, zt,ii′〉) =
1

(

Nt

2

)

+Nt

∑

1≤i≤i′≤Nt

[

1− lt,ii′βtzt,ii′
]

+

where [1 − s]+ = max{0, 1 − s} and R(B) is the
regularization function on the kernel weights B. Since



we are interested in learning task relationships using
the task kernel weights βt, we can directly extend the
above formulation to incorporate the regularization on
βt based on MK-MTRL.
(4.18)

min
Ω

min
B≥0

T
∑

t=1

ℓ(lt,ii′ , 〈βt, zt,ii′〉) +
µ

2
tr(BΩ−1B⊤)

Ω � 0,

tr(Ω) ≤ 1

Since the above objective function depends on every
pair of observations, we consider an online learning
procedure for faster computation that learns the kernel
weights and the task relationship matrix sequentially.
Due to space limitations, we show the online version of
our algorithms in the supplementary section. Note that
with the above formulation, one can easily extend the
existing approach to jointly learn both the feature and
task relationship matrices using matrix normal penalty
[28].

5 Algorithms

Algorithm 1 shows the pseudo-code for MK-MTRL.
It outlines the update steps explained in Section 3.
The algorithm alternates between learning the model
parameters, kernel weights and task relationship matrix
until it reaches the maximum number of iterations 2 or
when there are minimal changes in the subsequent B.

The two-stage, online learning of MK-MTRL is
given in Algorithm 2. The online learning of βt and
Ω is based on the recent work by Saha et. al., 2011 [20].
We set the maximum number of rounds to 100, 000.
Since we construct the examples in kernel space on the
fly, there is no need keep the base kernel matrices in
memory. This significantly reduces the computational
burden required in computing B.

We use libSVM to solve the T individual SVMs
(equation 4.10). All the base kernels are normalized to
unit trace. Note that equation 4.12 requires computing
Singular Value Decomposition (SVD) on (B⊤B). One
may use an efficient decomposition algorithm such as
the randomized SV D to speed up the learning process
[16].

6 Experiments

We evaluate the performance of our proposed model on
several benchmark datasets. We compare our proposed
model with five state-of-the-art baselines in multitask
learning and in multitask multiple kernel learning. All
reported results in this section are averaged over 10

2
maxIter is set to 50

random runs of the training data. Unless otherwise
specified, all model parameters are chosen via 5-fold
cross validation. The best model and models with
statistically comparable results are shown in bold.

6.1 Compared Models We compare the following
models for our evaluation.

• Single-Task Learning (STL) learns the tasks inde-
pendently. STL uses either SVM (in case of bi-
nary classification tasks) or Kernel Ridge regression
(in case of regression tasks) to learn the individual
models.

• Multi-task Feature Learning (MTFL [1]) learns a
shared feature representation from all the tasks us-
ing regularization. It learns this shared feature rep-
resentation along with the task model parameters
alternatively3.

• Multi-task Relationship Learning (MTRL [29])
learns task relationship matrix under a regulariza-
tion framework. This model can be viewed as a
multitask generalization for single-task learning. It
learns the task relationship matrix and the task pa-
rameters in an iterative fashion4.

• Single-task Multiple Kernel Learning (IMKL)
learns independent MKL for each task. This base-
line does not use any shared information between
the tasks. We use ℓp-MKL for each task. We tune
the value of p from [2, 3, 4, 6, 8.67] using 5-fold cross
validation.

• Multi-task Multiple Kernel Feature Learning (MK-
MTFL [10]) learns a shared kernel for feature
representation from all tasks. This is a multiple
kernel generalization of multitask feature learning
problem. Again, we tune the value of p̃ from
[2, 3, 4, 6, 8.67] using 5-fold cross validation5.

Unless otherwise specified, the kernels for STL,
MTFL andMTRL are chosen (via cross validation) from
either a Gaussian RBF kernel with different bandwidth
or a linear kernel for each dataset. The value for C is
chosen from [10−3, . . . , 103]. We tune the value of µ from
[10−7, . . . , 103]. We use Newton’s method to learn the
task kernel weight matrix B for the alternating mini-
mization algorithm. We compare our models on several

3The source code for this baseline is available at

http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar
4The source code for this baseline is available at

https://www.cse.ust.hk/~zhangyu/codes/MTRL.zip
5The source code for this baseline is available at

http://www.cse.iitb.ac.in/saketh/research/MTFL.tgz

http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar
https://www.cse.ust.hk/~zhangyu/codes/MTRL.zip
http://www.cse.iitb.ac.in/saketh/research/MTFL.tgz


Table 1: Mean Squared Error (MSE) for each company (×1000)

OLS Lasso MRCE FES STL IKL IMKL MK-MTFL MK-MTRL

Walmart 0.98 0.42 0.41 0.40 0.44 0.43 0.45 0.44 0.44

Exxon 0.39 0.31 0.31 0.29 0.34 0.32 0.33 0.32 0.32

GM 1.68 0.71 0.71 0.62 0.82 0.62 0.60 0.61 0.56

Ford 2.15 0.77 0.77 0.69 0.91 0.56 0.53 0.55 0.49

GE 0.58 0.45 0.45 0.41 0.43 0.41 0.40 0.40 0.39

ConocoPhillips 0.98 0.79 0.79 0.79 0.84 0.81 0.83 0.80 0.80

Citigroup 0.65 0.66 0.62 0.59 0.64 0.66 0.62 0.62 0.60

IBM 0.62 0.49 0.49 0.51 0.48 0.47 0.45 0.45 0.43

AIG 1.93 1.88 1.88 1.74 1.91 1.94 1.88 1.89 1.83

AVG 1.11 0.72 0.71 0.67 0.76 0.69 0.68 0.68 0.65

applications: Asset Return Prediction, Landmine De-
tection and Object Recognition 6. It is worth noting
that different applications require different types of base
kernels and there is no common set of kernel functions
that will work for all applications. We choose these base
kernels based on the application and the type of data.

6.2 Asset Return Prediction We begin our exper-
iments with asset return prediction data used in [19]
7. It consists of weekly log returns of 9 stocks from
the year 2004. This dataset is considered in linear mul-
tivariate regression with output covariance estimation
techniques [19]. We consider first-order vector auto-
regressive models of the form xt = f(xt−1) where xt

corresponds to the 9-dimensional vector of weekly log-
returns from 9 companies as shown in table 1. The
dataset is split evenly such that the first 26 weeks of the
year is used as the training set and the next 26 weeks
is used as the test set. Following [21], we use univariate
Gaussian kernels with 13 varying bandwidth, generated
from each feature, as base kernels. The total number of
base kernels sums to 117.

Performance is measured by the average mean-
squared prediction error over the test set for each task.
The experimental setup for this dataset follows exactly
[19]. We compare the results from our proposed and
baseline model with the results from Ordinary Least
Square (OLS ), Lasso, Multivariate Regression with
Covariate Estimation (MRCE ) and Factor Estimation
and Selection (FES ) models reported in [19] (See [19]
for more details about the models). In addition to the
standard baselines, we include Input Kernel Learning
(IKL), which learns a vector of kernel weights β shared

6See supplementary material for additional experiments
7http://cran.r-project.org/web/packages/MRCE/index.html

by all tasks [24].
After runningMK-MTRL on these 117 base kernels,

the model sets most of them to 0 except for base
kernels corresponding to bandwidths (1e− 4, 1). These
bandwidth selections represent the long-term and short-
term dependencies common in temporal data. We reran
the model with these selected non-zero bandwidths and
report the results for these selected base kernels. We
can see that the proposed model MK-MTRL performs
better than all the baselines.

6.3 Landmine Detection This dataset 8 consists of
19 tasks collected from different landmine fields. Each
task is a binary classification problem: landmines (+)
or clutter (−) and each example consists of 9 features
extracted from radar images with four moment-based
features, three correlation-based features, one energy
ratio feature and a spatial variance feature. Landmine
data is collected from two different terrains: tasks 1−10
are from highly foliated regions and tasks 11 − 19 are
from desert regions, therefore tasks naturally form two
clusters. Any hypothesis learned from a task should be
able to utilize the information available from other tasks
belonging to the same cluster.

We choose {30, 50, 80} examples per task for this
dataset. We use a polynomial kernel with power
{1, 2, 3, 4, 5} for generating our base kernels. Note
that we intentionally kept the size of the training data
small to drive the need for learning from other tasks,
which diminishes as the training sets per task become
large. Due to class-imbalance issue (with few (+)
examples compared to (−) examples), we use average
Area Under the ROC Curve (AUC) as the performance
measure. This dataset has been previously used for

8http://www.ee.duke.edu/~lcarin/LandmineData.zip

http://cran.r-project.org/web/packages/MRCE/index.html
http://www.ee.duke.edu/~lcarin/LandmineData.zip


Table 2: Average AUC scores for different samples of landmine dataset. The table reports the mean and standard
errors over 10 random runs.

30 samples 50 Samples 80 Samples

STL 0.6315 ± 0.032 0.6540 ± 0.026 0.6542 ± 0.027

MTFL 0.6387 ± 0.037 0.6968 ± 0.015 0.7051 ± 0.020

MTRL 0.6555 ± 0.034 0.6933 ± 0.023 0.7074 ± 0.024

IMKL 0.6857 ± 0.024 0.7138 ± 0.011 0.7278 ± 0.011

MK-MTFL 0.6866 ± 0.018 0.7145 ± 0.009 0.7305 ± 0.009

MK-MTRL 0.6870 ± 0.033 0.7242 ± 0.011 0.7405 ± 0.014

jointly learning feature correlation and task correlation
[28]. Hence, landmine dataset is an ideal dataset for
evaluating all the models.

Table 2 reports the results from the experiment.
We can see that MK-MTRL performs better in almost
all cases. When the number of training examples is
small, MK-MTRL has difficulty in learning the task
relationship matrix Ω as it depends on the kernel
weights. On the other hand, MK-MTFL performs
equally well as it shares the feature representation
among the tasks which is especially useful when the
number of training is relatively low. As we get more and
more training data, MK-MTRL performs significantly
better than all the other baselines.

6.4 Object Recognition In this section, we eval-
uate our two proposed algorithms for MK-MTRL with
computer vision datasets, Caltech101 9 and Oxford flow-
ers 10 in terms of accuracy and training time. Cal-

tech101 dataset consists of 9, 144 images from 102 cat-
egories of objects such as faces, watches, animals, etc.
The minimum, average and maximum number of im-
ages per category are 31,90 and 800 respectively. The
Caltech101 base kernels for each task are generated
from feature descriptors such as geometric blur, PHOW
gray/color, self-similarity, etc. For each of the 102
classes, we select 30 examples (for a total of 3060 ex-
amples per task) and then split these 30 examples into
testing and training folds, which ensures matching train-
ing and testing distributions. Oxford flowers consists of
17 varieties of flowers and the number of images per
category is 80. The Oxford base kernels for each task
are generated from a subset of feature values. Each
one-vs-all binary classification problem is considered as
a single task, which amount to 102 and 17 tasks with
38 and 7-base kernels per task, respectively. Following

9http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09
10http://www.robots.ox.ac.uk/~vgg/data/flowers/17/datasplits.mat

the previous work, we set the value of C = 1000 for
Caltech101 dataset.

In addition to the baselines used before, we com-
pare our algorithms with Multiple Kernel Learning by
Stochastic Approximation (MKL-SA) [3]. MKL-SA has
a similar formulation to that of (MK-MTFL), except
that it sets λtk = λt, ∀k in equation 2.3. At each time
step, it samples one task, according to the multino-
mial distribution Multi(λ1, λ2, . . . , λT ), to update it’s
model parameter, making it suitable for multitask learn-
ing with large number of tasks.

The results for Caltech101 and Oxford are shown in
Figure 1. The left plots show how the mean accuracy
varies with respect to different training set sizes. The
right plots show the average training time taken by each
model with varying training set sizes. From the plots,
we can see that MK-MTRL outperforms all the other
state-of-the art baselines in both Caltech101 and Oxford

datasets. But one may notice that the run-time of MK-

MTFL and MK-MTRL grows steeply in the number of
samples per class. Similar results are observed when we
increase the number of tasks or number of base kernels
per task.

Since both MK-MTFL and MK-MTRL require the
base kernels in memory to learn the kernel weights and
the task relationship matrix iteratively, this poses a
serious computational burden and explains our need
for efficient learning algorithm for multitask multiple
kernel learning problems. We report MK-MTRL with
two-stage, online procedure as one of the baselines. On
both Caltech101 and Oxford, the two-stage procedure
yields comparable performance to that of MK-MTRL.

The run-time complexity of two-stage, online MK-

MTRL learning is significantly better than almost all
the baselines. Since AVG takes the average of the task-
specific base kernels, it has the lowest computational
time. It is interesting to see that two-stage, online MK-

MTRL performs better than MKL-SA both in terms of

http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/datasplits.mat
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Figure 1: Top: Mean accuracy (left) and runtime (right) calculated for Caltech101 dataset with varying training
set sizes. Bottom: Mean accuracy (left) and runtime (right) calculated for Oxford dataset with varying training
set sizes.

accuracy and running time. We believe that sinceMKL-

SA updates the kernel weights after learning a single
model parameter, it takes more iterations to converge
(in term of model parameters and the kernel weights).

6.5 Robot Inverse Dynamics We consider the
problem of learning the inverse dynamics of a 7-DOF
SARCOS anthropomorphic data 11. The dataset con-
sists of 28 dimensions, of which first 21 dimensions are
considered as features and the last 7 dimensions are used
as outputs. We add an additional feature to account for
the bias. There are 7 regression tasks and use kernel
ridge regression to learn the task parameters and ker-
nel weights. The feature set includes seven joint posi-
tions, seven joint velocities and seven joint accelerations,
which is used to predict seven joint torques for the seven
degrees of freedom (DOF). We randomly sample 2000
examples, of which {15, 50, 100, 150, 200, 600} are used

11http://www.gaussianprocess.org/gpml/data/

for training sets and the rest of the examples are used
for test set.

This dataset has been previous shown to include
positive correlation, negative correlation and task unre-
latedness and will be a challenging problem for baselines
that doesn’t learn the task correlation.

Following [29], we use normalized Mean Squared
error (nMSE), which is the mean squared error divided
by the variance of the ground truth. We generate 31
base kernels from multivariate Gaussian kernels with 10
varying bandwidth (based on the range of the data) and
feature-wise linear kernel on each of the 21 dimensions.
We use linear kernel for single task learning. The results
calculated for different training set size is reported in
Figure 2. We can see that MK-MTRL performs better
than all the baselines. Contrary to the results report
in [10], MK-MTFL performs the worst. As the model
sees more data, it struggles to learn the task relationship
and even performs worse than the single task learning.

Moreover, we report the individual nMSE for each

http://www.gaussianprocess.org/gpml/data/


Table 3: Comparison for multiple kernel models using nMSE on
SARCOS data

STL IMKL MK-MTRL

1st DOF
0.0862

± 0.0033

0.0838

± 0.0032

0.0717

± 0.0075

2nd DOF
0.0996

± 0.0041

0.0945

± 0.0045

0.0686

± 0.0070

3rd DOF
0.0918

± 0.0042

0.0871

± 0.0040

0.0649

± 0.0071

4th DOF
0.0581

± 0.0021

0.0514

± 0.0020

0.0298

± 0.0037

5th DOF
0.1513

± 0.0063

0.1405

± 0.0057

0.1070

± 0.0053

6th DOF
0.2911

± 0.0094

0.2822

± 0.0081

0.1835

± 0.0125

7th DOF
0.0715

± 0.0025

0.0628

± 0.0024

0.0457

± 0.0036

AVG
0.1214

± 0.0015

0.1146

± 0.0013

0.0816

± 0.0028

Number of training data
15 50 100 150 200 600

nM
S

E

0

0.5

1

1.5

2

2.5

STL
IMKL
MK-MTFL
MK-MTRL

Figure 2: nMSE vs Number of training exam-
ple for SARCOS data

Table 4: Experiment on school dataset
Explained Variance

STL 0.1883 ± 0.020
IMKL 0.1975 ± 0.017
MK-MTFL 0.2024 ± 0.016
MK-MTRL 0.2134 ± 0.016

DOF in Table 3. It shows that MK-MTRL consistently
outperforms in all the tasks. Comparing the results to
the one reported in [29], we can see that MT-MTRL

(with 0.0816 AVG nMSE score) performs better than
MTFL and MTRL (with 0.3149 and 0.0912 AVG nMSE
scores respectively).

6.6 Exam Score Prediction For completeness, we
include the results for benchmark dataset in multi-
task regression 12. The school dataset consists of
examination scores of 15362 students from 139 schools
in London. Each school is considered as a task and
the feature set includes the year of the examination,
four school-specific and three student-specific attribute.
We replace each categorical attribute with one binary
variable for each possible attribute value, as in [1].
This results in 26 attributes with additional attribute
to account for the bias term. We generate univariate
Gaussian kernel with 13 varying bandwidths from each
of the 26 attributes as our base kernels. Training and
test set are obtained by dividing examples of each task

12http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar

into 60%-40%. We use explained variance as in [1],
which is defined as one minus nMSE. We can see that
MK-MTRL is better than both IMKL and MK-MTFL.

7 Conclusion

We proposed a novel multiple kernel multitask learn-
ing algorithm that uses inter-task relationships to effi-
ciently learn the kernel weights. The key idea is based
on the assumption that the related tasks will have sim-
ilar weights for the task-specific base kernels. We pro-
posed an iterative algorithm to jointly learn this task
relationship matrix, kernel weights and the task model
parameters. For large-scale datasets, we introduced a
novel two-stage online learning algorithm to learn kernel
weights efficiently. The effectiveness of our algorithm
is empirically verified over several benchmark datasets.
The results showed that both multiple kernel learning
and task relationship learning for multitask problems
significantly helps in boosting the performance of the
model.

http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar
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